

João Caldeira

Assistant Professor

Email. joao.caldeira@ulusofona.pt

March 19, 2025

Current Situation

Inexperienced Data Scientists

- Ignore resource consumption
- Lack skills to optimize software
- Don't have tools to easily help them improve

Problem

supporters = pd.read_csv("supporters.csv")

√ 0.0s

supporters.head()

✓ 0.0s 閉 Open 'supporters' in Data Wrangler

	A First Name	A Last Name	# Age	A⊐ Gender	# Years_of_Support	# Power_Voting
0	Alice	Brown	66	Male	5	10.0
1	Jack	Jackson	56	Male	52	7.0
2	Charlie	Johnson	61	Female	55	16.0
3	Alice	Anderson	70	Female	69	5.0
4	Alice	Johnson	75	Male	0	16.0

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1000 entries, 0 to 999 Data columns (total 6 columns): # Column Non-Null Count Dtype _____ _____ ____ 0 First Name 1000 non-null object 1 Last Name 1000 non-null object 2 Age 1000 non-null int64 3 Gender 1000 non-null object 4 Years_of_Support 1000 non-null int64 5 Power_Voting 1000 non-null float64 dtypes: float64(1), int64(2), object(3) memory usage: 47.0+ KB

Get total memory usage in bytes

total_memory = supporters.memory_usage(deep=True).sum()
print(f"Total memory usage: {total_memory / 1024:.2f} KB")

√ 0.0s

Total memory usage: 206.08 KB

Problem

dtypes = { "First Name": "category", "Last Name": "category", "Age": "int8", "Gender": "category", "Years_of_Support": "int8", "Power_Voting": "int8" }

0.0s

supporters = pd.read_csv("supporters.csv", dtype=dtypes)

√ 0.0s

supporters.head()

✓ 0.0s 閉 Open 'supporters' in Data Wrangler

	First Name	🗘 Last Name	# Age	🗘 Gender	# Years_of_Support	# Power_Voting
0	Alice	Brown	66	Male	5	10
1	Jack	Jackson	56	Male	52	7
2	Charlie	Johnson	61	Female	55	16
3	Alice	Anderson	70	Female	69	5
4	Alice	Johnson	75	Male	0	16

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1000 entries, 0 to 999 Data columns (total 6 columns):

#	Column	Non–Null Count	Dtype			
0	First Name	1000 non-null	category			
1	Last Name	1000 non-null	category			
2	Age	1000 non-null	int8			
3	Gender	1000 non-null	category			
4	Years_of_Support	1000 non-null	int8			
5	Power_Voting	1000 non-null	int8			
dtypes: category(3), int8(3)						
memory usage: 6.8 KB						

Get total memory usage in bytes

total_memory = supporters.memory_usage(deep=True).sum()
print(f"Total memory usage: {total_memory / 1024:.2f} KB")

√ 0.0s

Total memory usage: 8.02 KB

4

Solution

Benchmarking Energy Consumption

Assessing Energy in Python Tasks

Gonçalo Cabeleira & João Caldeira @ 2025

This Notebook runs multiple benchmarks on Data Science Code examples.

UNIVERSIDADE LUSÓFONA

Code to Benchmark Python code

from ul.core.tracker import Tracker

tracker = Tracker()
tracker.start()

Python code here

tracker.stop()

Python

Python

Python

Python

Solution

- Collection
 - Hardware, Software & Data metrics

Product & Process metrics

timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy, 1 2 2025-03-02T19:55:48, codecarbon, b4681a7d-227e-46f4-99b9-c93047d8ab7e, 5b0fa12a-3dd7-45bb-9766-cc326314d9f1, 0.0596987079479731, 1.308117143353209 2025-03-02T19:57:45, codecarbon, 50459a0a-4e35-4076-b64f-65d7aa5688c4, 5b0fa12a-3dd7-45bb-9766-cc326314d9f1, 0.0525198749965056, 1.150141044711092 3 4 2025-03-02T19:59:25, codecarbon, 9c8df34c-f2f6-4daa-8d85-f95fe1b09aab, 5b0fa12a-3dd7-45bb-9766-cc326314d9f1, 0, 10721020802157, 2, 370631580945304e-5 6 2025-03-02T20:03:40, codecarbon, 52ee16ee-39ae-4114-ba8b-f0ecc6f6a365, 5b0fa12a-3dd7-45bb-9766-cc326314d9f1, 0.0667147919884882, 1.468381633937921 2025-03-02T20:05:12, codecarbon, 17bd6726-4235-42ee-86fd-afb0a1ef4410, 5b0fa12a-3dd7-45bb-9766-cc326314d9f1, 0.0545112910331226, 1.193856384826657 7 2025-03-02T20:08:05, codecarbon, d9bf6503-0276-42ab-92eb-0a59445e2b7a, 5b0fa12a-3dd7-45bb-9766-cc326314d9f1, 0.0295651669730432, 6.282353562739643 8 9 2025-03-02T20:09:15, codecarbon, 0705078c-c118-45d3-a7e9-e01bd0b0fd52, 5b0fa12a-3dd7-45bb-9766-cc326314d9f1, 0.03220904094632715, 7.00185056980518

Solution

Contributions

- Design of novel metrics to assess notebooks quality.
- Development of an artifact to collect metric data about resource consumption and execution times.
- Publish a real dataset with notebooks execution data allowing for the creation of ML models able to predict resource consumption.

Benefits

- Valued Added
 - Community can build ML models for prediction of Notebooks execution times and resource consumption.
 - Each Data Scientist can use it to assess the time and resource consumption of their notebooks without/before running them.

João Caldeira

Assistant Professor

Email. joao.caldeira@ulusofona.pt

March 19, 2025

